

Transverse Spin Phenomena and Their Impact on QCD

A Workshop in Honor of Gary Goldstein's 70th Birthday

Transversity and its chiral-odd/-even friends

gunar.schnell @ desy.de

The proton spin "puzzle"

• Inclusive DIS from longitudinally polarized Deuterium target: $\Delta\Sigma = 0,330 \pm 0,025 \text{ (exp.)} \pm 0,011 \text{ (theory)} \pm 0,028 \text{ (evol.)}$ PRD 75 (2007) 012007

The proton spin "puzzle" $\frac{1}{2} = \frac{1}{2} \Delta \Sigma$ \checkmark $+ \Delta G$ \checkmark gluon spin

+ L_q + L_g ← orbital angular momentum

- Inclusive DIS from longitudinally polarized Deuterium target: $\Delta \Sigma = 0,330 \pm 0,025 \text{ (exp.)} \pm 0,011 \text{ (theory)} \pm 0,028 \text{ (evol.)}$ PRD 75 (2007) 012007
- High- p_T hadrons at HERMES:

 $\Delta G/G = 0.071 \pm 0.034^{(stat)} \pm 0.010^{(sys-exp)} + 0.127^{+0.127}_{-0.105}$ (sys-model) (sys-model)

gunar.schnell @ desy.de

The proton spin "puzzle"

 $\frac{1}{2} = \frac{1}{2} \Delta \Sigma$ $+ \Delta G$ $\frac{1}{2} = \frac{1}{2} \Delta \Sigma$ $\frac{1}{2} \Delta \Sigma$ $\frac{1}{2} = \frac{1}{2} \Delta \Sigma$ $\frac{1}{2} \Delta \Sigma$ $\frac{1}{2} = \frac{1}{2} \Delta \Sigma$ $\frac{1}{2} \Delta \Sigma$ $\frac{1}{2} = \frac{1}{2} = \frac{1}{2} \Delta \Sigma$ $\frac{1}{2} = \frac{1}{2$

Inclusive DIS from longitudinally polarized Deuterium target:

 $\Delta\Sigma = 0,330 \pm 0,025$ (exp.) $\pm 0,011$ (theory) $\pm 0,028$ (evol.)

PRD 75 (2007) 012007

High-p_T hadrons at HERMES:

∆**G/G** = 0.071 ± 0.034^(stat) ± 0.010 ^(sys-exp) +0.127 JHEP 1008 (2010) 130 -0.105 ^(sys-model)

	quark pol.					
	J	U	L	Т	6	
pol.	U	f_1		h_1^\perp		
leon	L		g_{1L}	h_{1L}^{\perp}		
nuc	Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$		

Twist-2 TMDs

- functions in black survive integration over transverse momentum
- functions in green box are chirally odd
- functions in red are naive T-odd

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

$$f_1^{\mathbf{q}} = \bigcirc \qquad g_1^{\mathbf{q}} = \bigcirc - \bigcirc \qquad h_1^{\mathbf{q}} = \bigcirc - \bigcirc \qquad (\bigcirc - \bigcirc)$$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

need to couple to chiral-odd fragmentation function:

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

need to couple to chiral-odd fragmentation function:
transverse spin transfer (polarized final-state hadron)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

chiral-odd transversity involves quark helicity flip

need to couple to chiral-odd fragmentation function:

- transverse spin transfer (polarized final-state hadron)
- 2-hadron fragmentation
- Collins fragmentation

gunar.schnell @ desy.de

The COMPASS experiment @ CERN

HERMES Experiment (†2007) @ DESY

27.6 GeV polarized e⁺/e⁻ beam scattered off ...

unpolarized (H, D, He,..., Xe) as well as **transversely (H)** and longitudinally (H, D) polarized (pure) gas targets

The quest for transversity

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

0.2

0.15 0.1 0.05

-0.05 -0.1 -0.15

-0.2

0.2

0.2

0.15 0.1 0.05

-0.05 -0.1

-0.15 -0.2 -0.25

 P_T^{\wedge}

Preliminary COMPASS 2007

reliminary COMPASS 2007

transverse proton data

10⁻¹

X_{Bi}

transverse proton data

10⁻²

Transversity distribution (transverse-spin transfer)

compatible with zero

- Note: Interpolation in the sensitivity of the se
 - measured at lower x
 where transversity is
 expected not to be large
 - 2010 data will reduce statistical uncertainty by factor 2

need to look at other hyperons?

gunar.schnell @ desy.de

0.2

0.1

0.3

0.4

0.5

0.6

0.7

0.

Ζ

Preliminary COMPASS 2007

Preliminary COMPASS 2007

transverse proton data

0.2

0.1

0.3

0.4

0.5

0.6

 σ

10⁻¹

Х_{Вј}

 $\overline{\Lambda}$

0.8

Ζ

0.7

 \leq

transverse proton data

10⁻²

Quark polarizations in hyperons

	Δu		Δd		Δs	
р	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
n	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
Σ^+	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^0	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^{-}	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Λ	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$rac{1}{3}(\Delta\Sigma+2D)$	0.58 ± 0.04
Ξ^0	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04
Ξ-	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04

Quark polarizations in hyperons

	Δu		Δd		Δs	
р	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
n	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
Σ^+	$rac{1}{3}(\Delta\Sigma+D+3F)$ (0.79 ± 0.04	$\frac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^0	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^{-}	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$\frac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$\frac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Λ	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$rac{1}{3}(\Delta\Sigma+2D)$	0.58 ± 0.04
Ξ^0	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04
Ξ-	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04

Quark polarizations in hyperons

	Δu		Δd		Δs	
р	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
n	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$\frac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05
Σ^+	$\frac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$\frac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^0	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma+D)$	0.32 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Σ^{-}	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$\frac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04
Λ	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$\frac{1}{3}(\Delta\Sigma - D)$	-0.20 ± 0.04	$rac{1}{3}(\Delta\Sigma+2D)$	0.58 ± 0.04
Ξ^0	$rac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$\frac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04
Ξ-	$rac{1}{3}(\Delta\Sigma+D-3F)$	-0.16 ± 0.05	$\frac{1}{3}(\Delta\Sigma-2D)$	-0.45 ± 0.04	$rac{1}{3}(\Delta\Sigma+D+3F)$	0.79 ± 0.04

better sensitivity to u and d quarks via charged Sigma's

- ullet large analyzing power of the parity-violating decay $\Sigma^+ o {
 m p} \pi^0$
 - good probe of u-quark polarization

gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

 $A_{UT} \sim \sin(\phi_{R\perp} + \phi_S) \sin\theta h_1 H_1^{\triangleleft}$

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp	

first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS!

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

first evidence for T-odd 2-hadron fragmentation function in semi-inclusive DIS!

invariant-mass dependence rules out Jaffe model predicting a sign change to rho mass

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

-0.1

first results from e⁺e⁻ by BELLE

Gary Fest, JLab October 2010

0.5

z

* Μ_{ππ}

▲Ζ

∎ X

0.6

1.5

M_{inv} [GeV/c²]

0.8

Ζ

0.7

0.65

0.15

0.6

Х

Σ

0.2

0.4

gunar.schnell @ desy.de

10-1

1 0.2

х

0.4

0.6

0.8

10⁻²

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

non-zero amplitudes both from COMPASS and HERMES

- similar $M_{\pi\pi}$ dependence
- COMPASS: hadron pairs HERMES: pion pairs
- larger amplitudes at COMPASS than at HERMES
- first results from e^+e^- by BELLE

gunar.schnell @ desy.de

 $\star M_{\pi\pi}$

▲Ζ

■ X

0.6

1.5

0.8

Ζ

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- non-zero amplitudes both from COMPASS and HERMES
- similar $M_{\pi\pi}$ dependence
- COMPASS: hadron pairs **HERMES**: pion pairs
- larger amplitudes at COMPASS than at HERMES
- first results from e⁺e⁻ by BELLE

gunar.schnell @ desy.de

Gary Fest, JLab October 2010

0.4

★ Μ_{ππ}

▲Ζ

∎ X

0.6

1.5

M_{inv} [GeV/c²]

0.8

Ζ

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

gunar.schnell @ desy.de

11

Ex.: Appearance of TMDs in SIDIS

Chiral-odd transversity h_1 must couple to chiral-odd FF can use k_T -unintegrated chiral-odd FF \Rightarrow <u>T-odd</u> Collins FF \Rightarrow leads to Single-Spin Asymmetrie (SSA)

gunar.schnell @ desy.de

Ex.: Appearance of TMDs in SIDIS

$$d\sigma = d\sigma_{UU}^{0} + \cos 2\phi \, d\sigma_{UU}^{1} + \frac{1}{Q} \cos \phi \, d\sigma_{UU}^{2} + \lambda_{e} \frac{1}{Q} \sin \phi \, d\sigma_{LU}^{3}$$

$$+S_{L} \left\{ \sin 2\phi \, d\sigma_{UL}^{4} + \frac{1}{Q} \sin \phi \, d\sigma_{UL}^{5} + \lambda_{e} \left[d\sigma_{LL}^{6} + \frac{1}{Q} \cos \phi \, d\sigma_{LL}^{7} \right] \right\}$$

$$+S_{T} \left\{ \sin(\phi - \phi_{S}) \, d\sigma_{UT}^{8} + \sin(\phi + \phi_{S}) \, d\sigma_{UT}^{9} + \sin(3\phi - \phi_{S}) \, d\sigma_{UT}^{10} + \frac{1}{Q} \left(\sin(2\phi - \phi_{S}) \, d\sigma_{UT}^{11} + \sin \phi_{S} \, d\sigma_{UT}^{12} \right)$$
Seam Target Polarization
$$+\lambda_{e} \left[\cos(\phi - \phi_{S}) \, d\sigma_{LT}^{13} + \frac{1}{Q} \left(\cos \phi_{S} \, d\sigma_{LT}^{14} + \cos(2\phi - \phi_{S}) \, d\sigma_{LT}^{15} \right) \right] \right\}$$
Mulders and Tangermann, Nucl. Phys. B 461 (1996) 197
Boer and Mulders, Phys. Rev. D 57 (1998) 5780
Bacchetta et al., Phys. Lett. B 595 (2004) 309

Bacchetta et al., JHEP 0702 (2007) 093

"Trento Conventions", Phys. Rev. D 70 (2004) 117504

gunar.schnell @ desy.de

Bea

	U	L	Т	
U	f_1		h_1^\perp	
L		g_{1L}	h_{1L}^{\perp}	
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$	

Transversity distribution (Collins fragmentation)

- significant in size and opposite in sign for charged pions
- disfavored Collins FF large and opposite in sign to favored one

leads to various cancellations in SSA observables

Non-zero transversity Non-zero Collins function

gunar.schnell @ desy.de

0.4 0.6 0.8

0.2 0.4 0.6 0.8

Gary Fest, JLab October 2012,

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Fit of Collins amplitudes

[Anselmino et al., Nucl.Phys.Proc.Suppl.191 (2009) 98]

	U	L	Т
U	f_1	1	h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Fit of Collins amplitudes

 \mathbf{Z}_2

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Fit of Collins amplitudes

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

[1] Soffer et al. PRD 65 (02)
[2] Korotkov et al. EPJC 18 (01)
[3] Schweitzer et al., PRD 64 (01)
[4] Wakamatsu, PLB 509 (01)

[5] Pasquini et al., PRD 72 (05)

- [6] Bacchetta, Conti, Radici, PRD 78 (08)
- [7] Anselmino et al., PRD 75 (07)
- [8] Anselmino et al., arXiv:0807.0173

	U	L	Т
U	f_1	1	h_1^\perp
L	Constantine des	g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

[1] Soffer et al. PRD 65 (02)
[2] Korotkov et al. EPJC 18 (01)
[3] Schweitzer et al., PRD 64 (01)
[4] Wakamatsu, PLB 509 (01)

[5] Pasquini et al., PRD 72 (05)

[6] Bacchetta, Conti, Radici, PRD 78 (08)

[7] Anselmino et al., PRD 75 (07)

[8] Anselmino et al., arXiv:0807.0173

V u quark transversity along nucleon spin

gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L	Constantine des	g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

[1] Soffer et al. PRD 65 (02)
[2] Korotkov et al. EPJC 18 (01)
[3] Schweitzer et al., PRD 64 (01)
[4] Wakamatsu, PLB 509 (01)

[5] Pasquini et al., PRD 72 (05)

[6] Bacchetta, Conti, Radici, PRD 78 (08)

[7] Anselmino et al., PRD 75 (07)

[8] Anselmino et al., arXiv:0807.0173

gunar.schnell @ desy.de

	U	\mathbf{L}	Т
U	f_1		h_1^\perp
L	Constantine des	g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

[1] Soffer et al. PRD 65 (02)
[2] Korotkov et al. EPJC 18 (01)
[3] Schweitzer et al., PRD 64 (01)
[4] Wakamatsu, PLB 509 (01)

[5] Pasquini et al., PRD 72 (05)

- [6] Bacchetta, Conti, Radici, PRD 78 (08)
- [7] Anselmino et al., PRD 75 (07)
- [8] Anselmino et al., arXiv:0807.0173

Т

 h_1^{\perp}

U

 f_1

U

L

Transversity's friends

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

- chiral-odd >> needs Collins FF (or similar)
- leads to sin(3 ϕ ϕ_s) modulation in AUT
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

- chiral-odd is needs Collins FF (or similar)
- leads to sin(3 ϕ ϕ_s) modulation in AUT
- proton and deuteron data consistent with zero
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

gunar.schnell @ desy.de

 \mathbf{P}_h

 $\mathbf{P}_{h\perp}$

 \mathbf{S}_{\perp}

 \mathbf{S}

'x

y'

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

$$\sin(\mathbf{3}\phi - \phi_{\mathbf{S}}) \rightsquigarrow -\sin(\mathbf{3}\phi)$$

 \mathbf{P}_h

 $\mathbf{P}_{h\perp}$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, rac{h_{1T}^\perp}{}$

$$\sin(\mathbf{3}\phi - \phi_{\mathbf{S}}) \rightsquigarrow -\sin(\mathbf{3}\phi)$$

1

S

'x

y'

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	$h_1, \frac{h_{1T}^{\perp}}{h_{1T}}$

could also use longitudinally polarized targets:

$$\sin(\mathbf{3}\phi - \phi_{\mathbf{S}}) \rightsquigarrow -\sin(\mathbf{3}\phi)$$

gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

Worm-Gear I

0.1

consistent with zero at **COMPASS** and HERMES

- (new results coming soon)
- consistent with zero at COMPASS and HERMES

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- chiral even
- first direct evidence for worm-gear g₁T on ³He target

€

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

chiral even

first direct evidence for worm-gear g_{1T} on ³He target

• only indirect hints $from_n^{\pi^+} \propto 4d \cdot D_1^{fav} + u \cdot D_1^{unfav}$ $\sigma_n^{\pi^-} \propto 4d \cdot D_1^{unfav} + u \cdot D_1^{unfav}$ proton data via AUT

$$\begin{aligned} \propto & \left(\mathbf{x} \mathbf{f}_{\mathbf{T}}^{\perp} \mathbf{D}_{1} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{h}_{1}^{\underbrace{\boldsymbol{\mathfrak{F}}}} \mathbf{\tilde{\mathbf{H}}} \right) \\ & - \mathcal{W}(\mathbf{p}_{\mathbf{T}}, \mathbf{k}_{\mathbf{T}}, \mathbf{P}_{\mathbf{h}\perp}) \left[\left(\mathbf{x} \mathbf{h}_{\mathbf{T}} \mathbf{H}_{1}^{\perp} + \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{g}_{1\mathbf{T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathbf{z}} \right) \right. \\ & \left. - \left(\mathbf{x} \mathbf{h}_{\mathbf{T}}^{\perp} \mathbf{H}_{1}^{\perp} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{f}_{1\mathbf{T}}^{\perp} \frac{\tilde{\mathbf{D}}^{\perp}}{\mathbf{z}} \right) \right] \end{aligned}$$
gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

chiral even

first direct evidence for worm-gear g_{1T} on ³He target

only indirect hints from $\pi^{n+} \propto 4d \cdot D_1^{fav} + u \underbrace{\widehat{O}}_{U_1}^{U_1} \underbrace{D}_{U_1}^{u_1fav} \pi^{-1}$ proton data via A_{UT}

$$\propto \left(\mathbf{x} \mathbf{f}_{\mathbf{T}}^{\perp} \mathbf{D}_{1} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{h}_{1}^{\underbrace{\mathbf{f}}_{\mathbf{Z}}} \right) \\ - \mathcal{W}(\mathbf{p}_{\mathbf{T}}, \mathbf{k}_{\mathbf{T}}, \mathbf{P}_{\mathbf{h}\perp}) \left[\left(\mathbf{x} \mathbf{h}_{\mathbf{T}} \mathbf{H}_{1}^{\perp} + \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{g}_{1\mathbf{T}} \frac{\tilde{\mathbf{G}}^{\perp}}{\mathbf{z}} \right) \right. \\ \left. - \left(\mathbf{x} \mathbf{h}_{\mathbf{T}}^{\perp} \mathbf{H}_{1}^{\perp} - \frac{\mathbf{M}_{\mathbf{h}}}{\mathbf{M}} \mathbf{f}_{1\mathbf{T}}^{\perp} \frac{\tilde{\mathbf{D}}^{\perp}}{\mathbf{z}} \right) \right.$$

0.02

-0.02

-0.04

-0.06

-0.08

-0.

0.1

0.15

0.2

gunar.schnell @ desy.de

0.4

0.35

0.45

X_R

0.1

0.45

X_{Bi}

0.4

0.3

gunar.schnell @ desy.de

gunar.schnell @ desy.de

Sivers amplitudes for pions

gunar.schnell @ desy.de

Gary Fest, JLab October 2010

gunar.schnell @ desy.de

26

Modulations in spin-independent SIDIS cross section $d^5\sigma$ $\frac{\mathrm{d}^{5}\sigma}{\mathrm{d}x\,\mathrm{d}y\,\mathrm{d}z\,\mathrm{d}\phi_{h}\,\mathrm{d}P_{h\perp}^{2}} = \frac{\alpha^{2}}{xyQ^{2}} \left\{ 1 + \frac{\gamma^{2}}{2x} \right\} \left\{ A(y) F_{\mathrm{UU,T}} + B(y) F_{\mathrm{UU,L}} + C(y) \cos\phi_{h} F_{\mathrm{UU}}^{\cos\phi_{h}} + B(y) \cos 2\phi_{h} F_{\mathrm{UU}}^{\cos 2\phi_{h}} \right\}$ BOER-MULDERS $\frac{\text{leading twist}}{F_{UU}^{\cos 2\phi_h}} \propto C \left[-\frac{2(\hat{P}_{h\perp} \cdot \vec{k}_T)(\hat{P}_{h\perp} \cdot \vec{p}_T) - \vec{k}_T \cdot \vec{p}_T}{MM_h} h_1^{\perp} H_1^{\perp} \right]$ EFFECT CAHN EFFECT $\frac{\text{next to leading twist}}{F_{UU}^{\cos\phi_h} \propto \frac{2M}{O}} C \left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{k}_T}{M} x f_1 D_1 + \dots \right]^{\text{ter}}$ Interaction dependent terms neglected

(Implicit sum over quark flavours)

gunar.schnell @ desy.de

Signs of Boer-Mulders

gunar.schnell @ desy.de

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^{\perp}

Signs of Boer-Mulders

gunar.schnell @ desy.de

- no dependence on hadron charge expected
- prediction off from data

- no dependence on hadron charge expected
- prediction off from data
- ⇒ sign of Boer-Mulders in cosφ modulation or "real" twist-3?

gunar.schnell @ desy.de

Summary

- transversity is non-zero and quite sizable
 - can be measured, e.g., via Collins effect or s-p interference in 2-hadron fragmentation
- Sivers and Boer-Mulders effects are also non-zero
 - direct probe of "physics of the QCD gauge links"
- so far no sign of a non-zero Mulders-Tangerman distribution
- but first evidence for non-vanishing worm-gear functions